翻訳と辞書
Words near each other
・ Spin Aqua
・ Spin art
・ Spin Away
・ SPIN bibliographic database
・ Spin Boldak
・ Spin Boldak bombing
・ Spin Boldak District
・ Spin bowling
・ Spin canting
・ Spin casting
・ Spin casting (mirrors)
・ Spin chemistry
・ Spin City
・ Spin coating
・ Spin column-based nucleic acid purification
Spin connection
・ Spin contamination
・ Spin Control
・ Spin crossover
・ Spin cycle
・ Spin density wave
・ Spin diffusion
・ Spin disk
・ Spin Doctors
・ Spin Doctors discography
・ Spin drift
・ Spin echo
・ Spin engineering
・ Spin field
・ Spin Fighters


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spin connection : ウィキペディア英語版
Spin connection
In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
==Definition==

Let e_\mu^ be the local Lorentz frame fields or vierbein (also known as a tetrad), which is a set of orthogonal space time vector fields that diagonalize the metric tensor
:g_ = e_\mu^ e_\nu^ \eta_,
where g_ is the spacetime metric and \eta_ is the Minkowski metric. Here, Latin letters denote the local Lorentz frame indices; Greek indices denote general coordinate indices. This simply expresses that g_, when written in terms of the basis e_\mu^, is locally flat. The vierbein field indices can be raised or lowered by the metric g^ and/or \eta^. For example, e^=g^ e_\nu^.
The spin connection is given by
:\omega_^=e_\nu^ \Gamma^\nu_e^ + e_\nu^ \partial_\mu e^ = e_\nu^ \Gamma^\nu_e^ - e^ \partial_\mu e_\nu ^,
where \Gamma^\sigma_ is the affine connection. Or purely in terms of the vierbein field as〔M.B. Green, J.H. Schwarz, E. Witten, "Superstring theory", Vol. 2.〕
:\omega_^=\frace^(\partial_\mu e_\nu^-\partial_\nu e_\mu^)-\frace^(\partial_\mu e_\nu^-\partial_\nu e_\mu^)-\frace^e^(\partial_\rho e_-\partial_\sigma e_)e_\mu^,
which by definition is anti-symmetric in its internal indices a, b.
The spin connection \omega_\mu^ defines a covariant derivative D_\mu on generalized tensors. For example its action on V_\nu^ is
:D_\mu V_\nu^ = \partial_\mu V_\nu^ + ^a}_b V_\nu^ - \Gamma^\sigma_ V_\sigma^

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spin connection」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.